University of Hertfordshire

From the same journal

By the same authors

View graph of relations
Original languageEnglish
JournalIEEE Transactions on Wireless Communications
Publication statusAccepted/In press - 2021


Intelligent reflecting surface (IRS), consisting of low-cost passive elements, is a promising technology for improving the spectral and energy efficiency of the fifth-generation (5G) and beyond networks. It is also noteworthy that an IRS can shape the reflected signal propagation. Most works in IRS-assisted systems have ignored the impact of the inevitable residual hardware impairments (HWIs) at both the transceiver hardware and the IRS while any relevant works have addressed only simple scenarios, e.g., with single-antenna network nodes and/or without taking the randomness of phase noise at the IRS into account. In this work, we aim at filling up this gap by considering a general IRS-assisted multi-user (MU) multiple-input single-output (MISO) system with imperfect channel state information (CSI) and correlated Rayleigh fading. In parallel, we present a general computationally efficient methodology for IRS reflect beamforming (RB) optimization. Specifically, we introduce an advantageous channel estimation (CE) method for such systems accounting for the HWIs. Moreover, we derive the uplink achievable spectral efficiency (SE) with maximal-ratio combining (MRC) receiver, displaying three significant advantages being: 1) its closed-form expression, 2) its dependence only on large-scale statistics, and 3) its low training overhead. Notably, by exploiting the first two benefits, we achieve to perform optimization with respect to the that can take place only at every several coherence intervals, and thus, reduces significantly the computational cost compared to other methods which require frequent phase optimization. Among the insightful observations, we highlight that uncorrelated Rayleigh fading does not allow optimization of the SE, which makes the application of an IRS ineffective. Also, in the case that the phase drifts, describing the distortion of the phases in the RBM, are uniformly distributed, the presence of an IRS provides no advantage. The analytical results outperform previous works and are verified by Monte-Carlo (MC) simulations.


Publisher Copyright: Crown

ID: 26898243