University of Hertfordshire

Standard

Harvard

APA

Vancouver

Author

Bibtex

@article{71da7fadeab642f9b6c2eea9925abc4c,
title = "Moisture evolution, thermal properties and energy consumption of drying spent grain pellets from a blend of some cereals for small scale bio-energy utilization: Modelling and Experimental study.",
abstract = "A fixed bed convective dryer was used to assess the influence of drying temperature and geometry deformation on moisture and thermo-physical property evolution of solid fraction pellets (spent grain) from wet milling of cereal blends for bio-energy generation for small homes. The aim is to study the physical mechanism of drying the pellets that includes temperature and moisture behaviour, transport phenomena, the response rate to varying process conditions, drying time, and energy utilization which can be applied in the development of a fixed bed dryer for drying the pellets at a lower scale. The modified Cranck's diffusion model was used to study moisture loss by introducing shrinkage. The verification of the model gave the mean absolute error (MAE) for moisture content with shrinkage as 0.0366 - 0.1500 while for without shrinkage was 0.0729 - 0.1500 for 60- 80 oC. The effective moisture diffusivity with integrating shrinkage is lower than non- shrinkage though these values varied with drying time. Fitting the moisture ratio with the exponential drying curve equations shows that logarithmic equations were the best model for drying at 60 and 70 oC while Henderson and Pabis's model was better at 80 oC isothermal drying. Thermophysical analysis showed that the average specific heat capacity ranges from 5423.387 to 5198.197J/kgK while the thermal conductivity ranged from 0.115281to 0.136882W/mK at 60-80 oC. The energy and specific energyconsumption ranged from 0.41 to 0.494 kWh and 108.39 to 119.29MJ/kg. The shrinkage ratios, effective diffusivity and energy and specific energy consumption were empirically presented as a function of moisture, temperature and or air velocity variations with a high degree of association.",
author = "M Ndukwu and I Horsfall and B Lamrani and Hongwei Wu and L Bennamoun",
year = "2022",
month = may,
day = "18",
language = "English",
journal = "Biomass Conversion and Biorefinery",
issn = "2190-6823",
publisher = "Springer",

}

RIS

TY - JOUR

T1 - Moisture evolution, thermal properties and energy consumption of drying spent grain pellets from a blend of some cereals for small scale bio-energy utilization: Modelling and Experimental study.

AU - Ndukwu, M

AU - Horsfall, I

AU - Lamrani, B

AU - Wu, Hongwei

AU - Bennamoun, L

PY - 2022/5/18

Y1 - 2022/5/18

N2 - A fixed bed convective dryer was used to assess the influence of drying temperature and geometry deformation on moisture and thermo-physical property evolution of solid fraction pellets (spent grain) from wet milling of cereal blends for bio-energy generation for small homes. The aim is to study the physical mechanism of drying the pellets that includes temperature and moisture behaviour, transport phenomena, the response rate to varying process conditions, drying time, and energy utilization which can be applied in the development of a fixed bed dryer for drying the pellets at a lower scale. The modified Cranck's diffusion model was used to study moisture loss by introducing shrinkage. The verification of the model gave the mean absolute error (MAE) for moisture content with shrinkage as 0.0366 - 0.1500 while for without shrinkage was 0.0729 - 0.1500 for 60- 80 oC. The effective moisture diffusivity with integrating shrinkage is lower than non- shrinkage though these values varied with drying time. Fitting the moisture ratio with the exponential drying curve equations shows that logarithmic equations were the best model for drying at 60 and 70 oC while Henderson and Pabis's model was better at 80 oC isothermal drying. Thermophysical analysis showed that the average specific heat capacity ranges from 5423.387 to 5198.197J/kgK while the thermal conductivity ranged from 0.115281to 0.136882W/mK at 60-80 oC. The energy and specific energyconsumption ranged from 0.41 to 0.494 kWh and 108.39 to 119.29MJ/kg. The shrinkage ratios, effective diffusivity and energy and specific energy consumption were empirically presented as a function of moisture, temperature and or air velocity variations with a high degree of association.

AB - A fixed bed convective dryer was used to assess the influence of drying temperature and geometry deformation on moisture and thermo-physical property evolution of solid fraction pellets (spent grain) from wet milling of cereal blends for bio-energy generation for small homes. The aim is to study the physical mechanism of drying the pellets that includes temperature and moisture behaviour, transport phenomena, the response rate to varying process conditions, drying time, and energy utilization which can be applied in the development of a fixed bed dryer for drying the pellets at a lower scale. The modified Cranck's diffusion model was used to study moisture loss by introducing shrinkage. The verification of the model gave the mean absolute error (MAE) for moisture content with shrinkage as 0.0366 - 0.1500 while for without shrinkage was 0.0729 - 0.1500 for 60- 80 oC. The effective moisture diffusivity with integrating shrinkage is lower than non- shrinkage though these values varied with drying time. Fitting the moisture ratio with the exponential drying curve equations shows that logarithmic equations were the best model for drying at 60 and 70 oC while Henderson and Pabis's model was better at 80 oC isothermal drying. Thermophysical analysis showed that the average specific heat capacity ranges from 5423.387 to 5198.197J/kgK while the thermal conductivity ranged from 0.115281to 0.136882W/mK at 60-80 oC. The energy and specific energyconsumption ranged from 0.41 to 0.494 kWh and 108.39 to 119.29MJ/kg. The shrinkage ratios, effective diffusivity and energy and specific energy consumption were empirically presented as a function of moisture, temperature and or air velocity variations with a high degree of association.

M3 - Article

JO - Biomass Conversion and Biorefinery

JF - Biomass Conversion and Biorefinery

SN - 2190-6823

ER -