University of Hertfordshire

From the same journal

By the same authors


  • 906718

    Final published version, 653 KB, PDF document

  • R. E. Mamouri
  • A. Papayannis
  • V. Amiridis
  • D. Mueller
  • P. Kokkalis
  • S. Rapsomanikis
  • E. T. Karageorgos
  • G. Tsaknakis
  • A. Nenes
  • S. Kazadzis
  • E. Remoundaki
View graph of relations
Original languageEnglish
Pages (from-to)1793-1808
Number of pages16
JournalAtmospheric Measurement Techniques
Publication statusPublished - 2012


A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9A degrees N, 23.6A degrees E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15-31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20-21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (r(eff)), single-scattering albedo omega) and mean complex refractive index (m)) at selected heights in the 2-3 km height region. We found that r(eff) was 0.14-0.4 (+/- 0.14) mu m, omega was 0.63-0.88 (+/- 0.08) (at 532 nm) and m ranged from 1.44 (+/- 0.10) + 0.01 (+/- 0.01)i to 1.55 (+/- 0.12) + 0.06 (+/- 0.02)i, in good agreement (only for the r(eff) values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and omega values. The retrieved aerosol chemical composition in the 2-3 km height region gave a variable range of sulfate (0-60%) and organic carbon (OC) content (0-50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low omega value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.


© Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License

ID: 1999674