University of Hertfordshire

From the same journal

By the same authors

Optimizing the Entrainment Geometry of a Dry Powder Inhaler: Methodology and Preliminary Results

Research output: Contribution to journalArticlepeer-review


View graph of relations
Original languageEnglish
Pages (from-to)2668-2679
Number of pages12
JournalPharmaceutical Research
Early online date11 Jul 2016
Publication statusPublished - 1 Nov 2016


Purpose: For passive dry powder inhalers (DPIs) entrainment and emission of the aerosolized drug dose depends strongly on device geometry and the patient’s inhalation manoeuvre. We propose a computational method for optimizing the entrainment part of a DPI. The approach assumes that the pulmonary delivery location of aerosol can be determined by the timing of dose emission into the tidal airstream. Methods: An optimization algorithm was used to iteratively perform computational fluid dynamic (CFD) simulations of the drug emission of a DPI. The algorithm seeks to improve performance by changing the device geometry. Objectives were to achieve drug emission that was: A) independent of inhalation manoeuvre; B) similar to a target profile. The simulations used complete inhalation flow-rate profiles generated dependent on the device resistance. The CFD solver was OpenFOAM with drug/air flow simulated by the Eulerian-Eulerian method. Results: To demonstrate the method, a 2D geometry was optimized for inhalation independence (comparing two breath profiles) and an early-bolus delivery. Entrainment was both shear-driven and gas-assisted. Optimization for a delay in the bolus delivery was not possible with the chosen geometry. Conclusions: Computational optimization of a DPI geometry for most similar drug delivery has been accomplished for an example entrainment geometry.


This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

ID: 12587834