University of Hertfordshire

From the same journal

From the same journal

By the same authors

Radio AGN in nearby dwarf galaxies: the important role of AGN in dwarf-galaxy evolution

Research output: Contribution to journalArticlepeer-review


View graph of relations
Original languageEnglish
Article numberstac068
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Publication statusPublished - 4 Feb 2022


We combine deep optical and radio data, from the Hyper Suprime-Cam and the Low-Frequency Array (LOFAR) respectively, to study 78 radio AGN in nearby (z < 0.5) dwarf galaxies. Comparison to a control sample, matched in stellar mass and redshift, indicates that the AGN and controls reside in similar environments, show similar star-formation rates (which trace gas availability) and exhibit a comparable incidence of tidal features (which indicate recent interactions). We explore the AGN properties by combining the predicted gas conditions in dwarfs from a cosmological hydrodynamical simulation with a Monte Carlo suite of simulated radio sources, based on a semi-analytical model for radio-galaxy evolution. In the subset of LOFAR-detectable simulated sources, which have a similar distribution of radio luminosities as our observed AGN, the median jet powers, ages and accretion rates are ∼1035 W, ∼5 Myr and ∼10−3.4 M⊙ yr−1 respectively. The median mechanical energy output of these sources is ∼100 times larger than the median binding energy expected in dwarf gas reservoirs, making AGN feedback plausible. Since special circumstances (in terms of environment, gas availability and interactions) are not necessary for the presence of AGN, and the central gas masses are predicted to be an order of magnitude larger than that required to fuel the AGN, AGN triggering in dwarfs is likely to be stochastic and a common phenomenon. Together with the plausibility of energetic feedback, this suggests that AGN could be important drivers of dwarf-galaxy evolution, as is the case in massive galaxies.


© 2022 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at

ID: 26738392