University of Hertfordshire

From the same journal

From the same journal

WSClean: an implementation of a fast, generic wide-field imager for radio astronomy

Research output: Contribution to journalArticlepeer-review


  • A. R. Offringa
  • B. McKinley
  • N. Hurley-Walker
  • F. H. Briggs
  • R. B. Wayth
  • D. L. Kaplan
  • M. E. Bell
  • L. Feng
  • A. R. Neben
  • J. D. Hughes
  • J. Rhee
  • T. Murphy
  • N. D. R. Bhat
  • G. Bernardi
  • J. D. Bowman
  • R. J. Cappallo
  • B. E. Corey
  • A. A. Deshpande
  • D. Emrich
  • A. Ewall-Wice
  • And 33 others
  • B. M. Gaensler
  • R. Goeke
  • L. J. Greenhill
  • B. J. Hazelton
  • L. Hindson
  • M. Johnston-Hollitt
  • D. C. Jacobs
  • J. C. Kasper
  • E. Kratzenberg
  • E. Lenc
  • C. J. Lonsdale
  • M. J. Lynch
  • S. R. McWhirter
  • D. A. Mitchell
  • M. F. Morales
  • E. Morgan
  • N. Kudryavtseva
  • D. Oberoi
  • S. M. Ord
  • B. Pindor
  • P. Procopio
  • T. Prabu
  • J. Riding
  • D. A. Roshi
  • N. Udaya Shankar
  • K. S. Srivani
  • R. Subrahmanyan
  • S. J. Tingay
  • M. Waterson
  • R. L. Webster
  • A. R. Whitney
  • A. Williams
  • C. L. Williams
View graph of relations
Original languageEnglish
Pages (from-to)606-619
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Early online date19 Aug 2014
Publication statusPublished - 11 Oct 2014


Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.


This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

ID: 10291852