CONTROLLED ACTUATION OF SELF-PROPELLED DROPLETS

Loïc Coudron, Clément Lemenu, Kevin Lemaine, Daniel McCluskey, Christabel Tan, Ian Munro, Arne Erik Holdo, Mark Tracey and Ian Johnston
University of Hertfordshire, School of Engineering and Computer Science, UK

Liquid in a wedge...

Natural occurrence: feeding phalarope shorebird

Theoretical equilibrium: energy based model

\[U = A_{SL} \gamma_{SL} + A_{LG} \gamma_{LG} + A_{SG} \gamma_{SG} = \gamma_{SG} (A_{SL} + A_{SG}) + \gamma_{LG} (A_{LG} - A_{SL} \cos \theta) \]

Self-propulsion behaviour...

... And superhydrophobic surfaces

Super-non-wetting regime (lotus leaf effect)
- Contact angle \(\theta > 150^\circ \)
- Cassie-Baxter model

Surface fabrication
Using NeverWet for the present study

Actuation of protein-laden droplets

Further development potential
- Droplet generation and transport
- Combining self propulsion and electrowetting for enhanced control over actuation
- Digital microfluidics using localised deflection of flexible membranes

Conclusion

Self-propulsion of liquid in non-wetting wedges offers interesting development perspectives for handling biomaterial-laden droplets in lab-on-a-chip devices

References